Difference between revisions of "Maintenance"

From ThinkWiki
Jump to: navigation, search
(Recovering BIOS passwords)
m (External Sources)
Line 77: Line 77:
  
 
===External Sources===
 
===External Sources===
* [http://www-307.ibm.com/pc/support/site.wss/document.do?sitestyle=ibm&lndocid=MIGR-4A2P54 IBM Support - LCD care and cleaning instructions]
+
* [http://www-307.ibm.com/pc/support/site.wss/document.do?sitestyle=lenovo&lndocid=MIGR-4A2P54 Lenovo Support - LCD care and cleaning instructions]
 
* [http://www-307.ibm.com/pc/support/site.wss/document.do?sitestyle=ibm&lndocid=MIGR-52190 IBM Support - System cleaning instructions]
 
* [http://www-307.ibm.com/pc/support/site.wss/document.do?sitestyle=ibm&lndocid=MIGR-52190 IBM Support - System cleaning instructions]
  

Revision as of 13:07, 10 December 2006

Here you can find general hints about keeping your ThinkPad in good shape. Look at your models category page for IBMs official maintenance guide for that model.

Battery treatment

Battery life expanding guide
Battery Type NiCd NiMH Lithium ion
General
  • always do complete discharge/charge cycles
  • avoid exposing the battery (or notebook) to excessive heat
  • always do complete discharge/charge cycles
  • avoid exposing the battery (or notebook) to excessive heat
  • never completely discharge the battery, partial dis-/recharges are better
  • remove battery when on AC
  • avoid exposing the battery (or notebook) to excessive heat
Charging
  • discharge before charging
  • discharge before charging
  • avoid charging if battery is nearly full
  • keep notebook off while charging
  • fully discharge battery every 30 or so charges to recalibrate fuel guage
Storage
  • almost discharged
  • cool and dry
  • almost discharged
  • cool and dry
  • never fully charged or discharged, ideally at about 40%
  • cool and dry, but do not freeze them. 10-15C is recommended

Battery health

Batteries, especially of the modern Li-Ion type, wear out quicker when they hold a large charge or are subject to higher temperatures (see above).

If you use your laptop at a desk, reduce battery wear by maintaining an appropriate charge level. When possible, remove Li-ion batteries while operating from AC as the notebook gets hot enough inside for that to damage the battery in the long run, even if charging is stopped.

On recent ThinkPads, charging thresholds can be configured in the bundled software. Under Linux, this is supported on recent models by the tp_smapi driver (and even without tp_smapi, if you have a dual-boot setup, you can set the thresholds under Windows and they will be remembered as long as you don't power off your machine with AC disconnected; suspend to RAM is OK). Have a look at How to use UltraBay batteries.

If you have spare Li-ion battery packs, store them at 40% charge in a cool place (15C being a recommended temperature, do not let the batteries freeze). If storing inside a refrigerator, beware of humidity, and be careful with cold spots that can easily freeze the battery if anything goes wrong.

The problem with 600 series batteries

ThinkPad 600 power management causes batteries to die before they should. Read more about this on the associated problem page.

Reviving batteries

Some people experience sudden drops in their batteries capacity.

A way to get these batteries back to full capacity is to run the "Battery Rundown" function of IBMs "PC Doctor for DOS". The program is downloadable from IBMs support site as three floppy disk images. For those who do not have a floppy, David Smith prepared a bootable CD image from the T22 floppy images. For newer ThinkPads there is an official bootable CD image.

See also

External sources

Cleaning the Display

If you discover markings that look like they originate from the TrackPoint or keyboard, or for information on how to avoid these, look at this page.

External Sources

Cleaning the Interior

ATTENTION!
The following instructions are not appropriate for all ThinkPad models. Please consult the hardware maintenance guide or on-line disassembly instructions for your model.

Most ThinkPad models (particularly the A-series and the T-series) tend to accumulate a lot of interior dust which they draw from their ventilation fan. A good dusting every few months is advised. The procedure is as follows.

ThinkPad T4x series

See IBM's keyboard removal instructions and movie.

ThinkPad T6x series

See IBM's keyboard removal instructions and movie.

Other models (which?)

  1. Unplug the computer.
  2. Remove the battery.
  3. Turn the ThinkPad over and find two to three screws with upraised double-arrows pointing to them.
  4. Unscrew these screws and set them aside.
  5. Press the silver area underneath where the battery used to be. The front of the keyboard will pop up.
  6. Turn the ThinkPad right side up and gently remove the keyboard, pulling it toward you.
  7. There is one connector between the ThinkPad and the keyboard. Disconnect it, and set the keyboard aside.
  8. If there is a small black plastic separator under the keyboard, remove it and set it aside.
  9. The fan should be visible in the upper left. That entire area will likely be dusty. With a can of compressed air (and only with a can of compressed air), dust that area and the surrounding area.
  10. Replace the small black plastic separator, then reconnect the keyboard.
  11. Slide the keyboard back into place, then press down on the Fn and right-arrow keys until it pops into place.
  12. Replace the keyboard screws and battery.

Dealing with spilling accidents

  1. Don't panic.
  2. Don't flip or tilt the computer to prevent the liquid from spreading all over the inside of the case.
  3. Shut down the OS and turn off the power:
    1. Unplug the computer.
    2. Remove the battery.
  4. Tilt the computer so that everything that leaked into the case can flow out the same way.
  5. Allow the computer to dry before switching it on again.
  6. For minor accidents this might already be sufficient. For major flooding you should either bring the computer to a dealer who knows how to open and clean it from inside. Or you can read the Hardware Maintenance Manual, open, clean, and dry the computer yourself.

See also Act quickly, carefully if you spill on laptops on MoneySense.ca (link broken as of 2006-09-18, the article is still available via web.archive.org).

Harddisk Backup / Upgrade

External Sources

Recovering BIOS passwords

Password recovery procedure for IBM ThinkPads using R24RF08 and IBMpass

1. Introduction.

The IBM ThinkPad uses a small eeprom (ATMEL 24RF08) to store different OEM issues like serial number, UUID, etc. The supervisor password (SVP) is also stored in this eeprom. The 24RF08 is not an ordinary eeprom: it features read protection, which the BIOS uses to lock down access to the eeprom contents. Also, the password is written in a special scan code, which needs to be translated to ASCII to be of any use.

To recover the password, one can use two different programs: R24RF08 (eeprom reader) and IBMpass (password revealer) available at http://www.allservice.ro. Diagrams are included in the reader kit.

Models for which R24RF08 and IBMpass are enough to recover the password: 240, 240X, 390E, 390X, 570, 570E, 600e, 600X, 770Z, A20m, A21e, A21m, a22m, A30, A30p, A31, A31p, G40, G41, R30, R31, R32, R40, R50, R51, Transnote, T20, T21, T22, T23, T30, T40, T40p, T41, T41p, T42, T42p, X20, X21, X22, X23, X24, X30, X31, X40, X41.

ThinkPads featuring TPCA technology (i.e. a TPM trusted platform module chip), especially T4x, X3x, X4x need the W24RF08 eeprom writer program to complete the password recovery procedure, if the passphrase function is enabled in BIOS setup.

Other models such as the 380XD or 600 use 24C01 or 93C46 eeproms, which can be read without special tools. The method is the same like for the models based on 24RF08, only the software to dump the eeprom is different.

Newer T43/T43p, R52, T60 and Z60 ThinkPads can be unlocked using PC8394 programming tools that consist in RPC8394 and WPC8394 (reader and writer for TPM chips). The software is available as well on http://www.allservice.ro. IBMpass 2.0 works for any TP model without exceptions.


2. Locating the ATMEL 24RF08 eeprom. Soldering.

No need to unsolder the 24RF08 eeprom, just solder 3 wires to SDA, SCL and GND pins of the eeprom. There are two eeprom layouts (see interface schematics described bellow), orresponding to 8 pin or 14 pin eeproms. Locate the eeprom first according to your model (E.g. T20-23 and T30 have the eeprom underneath TP, and can be accessed by removing the RAM modules cover, no need to dismantle the laptop.) and solder the wires using a soldering iron with a fine tip. Also, you can use 0.15 -0.20 mm enamel coated wires or similar small diameter insulated wires. These wires will be connected later to the interface. Tip: You can use clips to connect the wires or you can solder on the PCB traces leading to the eeprom pins. Once again, be careful and double, triple check the soldering if necessary till you are positively sure you have done the right job.


3. Choose and build the interface.

Since version 2.0, R24RF08 and W24RF08(eeprom writer) are compatible with a wide range of eeprom programmers. By default, both programs set the COM port signals to use direct logic level to access I2C bus. We provide here 2 schematics that are relevant for direct logic signals and for inverse logic signals (simple-i2cprog.pdf and driven-i2cprog.pdf). Also, depending of the interface you build, you can invert the logics for SDA-In, SDA-Out, and SCL COM port signals by some command line parameters described later in this document. a) The file simple-i2cprog.pdf contains the schematic diagram of a simple interface (known as SIPROG)based on 2 zeners and 2 resistors. This is a classic, easy to build circuit and works with soldered or unsoldered eeproms. The purpose of the 2 zeners is to convert RS232 levels (+/- 5V) to TTL levels, needed by the eeprom. It uses direct logic signals to I2C eeprom and is powered by the COM port. However, this interface works with in-system eeproms but is dependant on COM port current and eeprom bus impedance. R24RF08 works natively with this circuit, no need to change the lines signals with command line parameters. This circuit works pretty well with almost all ThinkPads series. b) The second interface is described in driven-i2cprog.pdf. The circuit uses MAX 232 as a RS232 to TTL driver and its main purpose is to work with soldered eeproms. The advantage of MAX232 is the TTL outputs that are more reliable and more powerful when work with soldered, in-system eeproms (dependency free from the COM port current). Due of the internal inverters of MAX232 the interface responds to an inverse signal logic level. R24RF08 needs /x, /d, /i switches to be specified in the command line.

What these switches mean: /x - invert serial clock, also known as SCL; /d - invert serial data output, also known as SDA-Out; /i - invert serial data input, also known as SDA-In. All those can be used in any combination to meet any interface specification.


4. How is it working:

Prepare your technician PC by connecting the interface to the COM1 port (don’t connect the wires to eeprom yet). Turn on the ThinkPad and press F1 to enter BIOS Setup. When you are prompted for the password and there’s no other activity like HDD access or so, connect the wires (GND first!, SDA, SCL) to the corresponding wires from the interface (attached before to COM1) and execute R24RF08:

-for SI-PROG interface (as described in 3.a above): r24rf08.exe <filename.ext>. where filename.ext is the file where eeprom content will be stored. Example: r24rf08 mytp.bin

-for MAX232 driven I2C interface (as described in 3.b above): r24rf08.exe <filename.ext> /x /d /i. where /x /d /i are command line parameters (switches) for this kind of interface. Example: r24rf08 mytp2.bin /x /d /i

Use exactly the instructed switches to avoid possible damages to your eeprom data! The file should be created in the same folder. Finally, disconnect the wires (GND last!) and turn off the ThinkPad by pressing on/off switch.


5. Reveal the password.

Now, you have the .bin file but you need to dump in scan code to retrieve the password. IBMpass 2.0 Lite is a free tool that will do the job. Just open the eeprom dump you’ve created before and search for 0x330, 0x340 lines. The password is located on 0x338 (and 0x340 depending on model) in scan code. For 24C01 eeproms the password is located at 0x38, 0x40. If the password won't work for the very first time then your eeprom may use newer IBM scancodes. In this case switch to alternate scan codes to find it. For those who want quick answers the recommended version is IBMpass 1.1. Usage for IBMpass 1.1 (command line only):

ibmpass mytp.bin – use “/a” switch to see in alternate scan code if needed: ibmpass mytp.bin /a

For some old models like 570 or 770Z you need to execute the eeprom patcher first. This will reset the read protection on the password offset. To do that just execute patcher.exe before the reading operation, without rebooting the laptop:

-for SI-PROG: patcher.exe , then immediately r24rf08.exe <filename.ext>

-for Driven-I2C (Max232) you must insert the switches: patcher.exe /x /d /i, then immediately r24rf08.exe <filename.ext> /x /d /i

W24RF08, the writer version, has included the complete APP reset operation you don’t need to use patcher.

Moreover, there are a new encrypting algos used with some new security chips (AT97SC3201, AT97SC3203) that are very secured. The password is not in scancode and in some cases not even in the eeprom. To unlock the machine, the dump should suffer some changes and the eeprom must be reprogrammed using W24RF08. This operation works for all IBM TCG/TCPA secured laptops w/o exceptions.


Remember, use 3 wires from the interface and 3 wires from eeprom! Connect them after your ThinkPad is powered and disconnect them right after you read the content, before you switch off the laptop.

External Sources